Core Mathematics C2 Paper K

1. Solve the equation

$$
\begin{equation*}
\log _{5}(4 x+3)-\log _{5}(x-1)=2 . \tag{4}
\end{equation*}
$$

2. Find the coefficient of x^{2} in the expansion of

$$
\begin{equation*}
(1+x)(1-x)^{6} . \tag{5}
\end{equation*}
$$

3. (i) Evaluate

$$
\begin{equation*}
\sum_{r=1}^{50}(80-3 r) . \tag{3}
\end{equation*}
$$

(ii) Show that

$$
\sum_{r=1}^{n} \frac{r+3}{2}=k n(n+7)
$$

where k is a rational constant to be found.
4.

The diagram shows triangle $P Q R$ in which $P Q=7$ and $P R=3 \sqrt{5}$.
Given that $\sin (\angle Q P R)=\frac{2}{3}$ and that $\angle Q P R$ is acute,
(i) find the exact value of $\cos (\angle Q P R)$ in its simplest form,
(ii) show that $Q R=2 \sqrt{6}$,
(iii) find $\angle P Q R$ in degrees to 1 decimal place.
5. (i) Find

$$
\begin{equation*}
\int\left(8 x-\frac{2}{x^{3}}\right) \mathrm{d} x . \tag{3}
\end{equation*}
$$

The gradient of a curve is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-\frac{2}{x^{3}}, \quad x \neq 0,
$$

and the curve passes through the point $(1,1)$.
(ii) Show that the equation of the curve can be written in the form

$$
y=\left(a x+\frac{b}{x}\right)^{2},
$$

where a and b are integers to be found.
6. Given that

$$
\mathrm{f}(x)=x^{3}+7 x^{2}+p x-6
$$

and that $x=-3$ is a solution to the equation $\mathrm{f}(x)=0$,
(i) find the value of the constant p,
(ii) show that when $\mathrm{f}(x)$ is divided by $(x-2)$ there is a remainder of 50 ,
(iii) find the other solutions to the equation $\mathrm{f}(x)=0$, giving your answers to 2 decimal places.
7. The second and third terms of a geometric series are $\log _{3} 4$ and $\log _{3} 16$ respectively.
(i) Find the common ratio of the series.
(ii) Show that the first term of the series is $\log _{3} 2$.
(iii) Find, to 3 significant figures, the sum of the first six terms of the series.
8. (i) Find, to 2 decimal places, the values of x in the interval $0 \leq x<\pi$ for which

$$
\tan 2 x=3 .
$$

(ii) Find, in terms of π, the values of y in the interval $0 \leq y<2 \pi$ for which

$$
\begin{equation*}
2 \sin y=\tan y \tag{7}
\end{equation*}
$$

9.

The diagram shows the curve C with equation $y=3 x-4 \sqrt{x}+2$ and the tangent to C at the point A.

Given that A has x-coordinate 4,
(i) show that the tangent to C at A has the equation $y=2 x-2$.

The shaded region is bounded by C, the tangent to C at A and the y-axis.
(ii) Find the area of the shaded region.

